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SUMMARY

A mass-conserving Level-Set method to model bubbly flows is presented. The method can handle high
density-ratio flows with complex interface topologies, such as flows with simultaneous occurrence of
bubbles and droplets. Aspects taken into account are: a sharp front (density changes abruptly), arbitrarily
shaped interfaces, surface tension, buoyancy and coalescence of droplets/bubbles. Attention is paid to
mass-conservation and integrity of the interface.

The proposed computational method is a Level-Set method, where a Volume-of-Fluid function is used
to conserve mass when the interface is advected. The aim of the method is to combine the advantages
of the Level-Set and Volume-of-Fluid methods without the disadvantages. The flow is computed with
a pressure correction method with the Marker-and-Cell scheme. Interface conditions are satisfied by
means of the continuous surface force methodology and the jump in the density field is maintained
similar to the ghost fluid method for incompressible flows. Copyright © 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this work incompressible two-phase flows are considered. The aim is to model high density-
ratio flows with complex interface topologies, such as occur in air/water flows. Between the
phases a sharp front exists, where density and viscosity change abruptly. This front is modelled
as an interface. The interface is a moving (internal) boundary. Also, surface tension acts on
the interface. A numerical method has to take this into account in order to handle arbitrarily
shaped interfaces which may collide and break up.
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340 S. P. VAN DER PIIL ET AL.

The proposed numerical method is based on the same approach as the Coupled Level-Set
Volume-of-Fluid (CLSVOF) [1, 2] method in the sense that the Level-Set method is combined
with a VOF method in order to conserve mass. However, instead of combining two existing
methods, in this work the coupling between the Level-Set function and VOF functions is more
straightforward and easily achieved. Furthermore, advection of the VOF function is carried
out without interface reconstruction. Instead, additional information provided by the Level-Set
formulation is used.

In this paper two-dimensional problems are considered. However, the goal is to simulate in
three dimensions, therefore our numerical method allows easy extension to three dimensions.
Furthermore, we aim to simulate large numbers of bubbles and droplets in future.

1.1. Survey of methods available

Various methods have been put forward to treat bubbly flows. In general, the interface rep-
resentation can be explicit (‘moving, boundary conforming mesh’) or implicit (‘fixed mesh’)
or a combination of both. Purely moving, boundary-conforming meshes are cumbersome for
simulating large numbers of arbitrarily shaped interfaces. This technique is therefore not very
suitable for the present work.

The front-tracking method [3,4] and the closely related immersed boundary method [5]
are combinations of fixed and moving mesh methods. Although the interface is tracked by
an interface grid, the flow is solved on a fixed grid. The interface conditions are satisfied by
regularizing (smoothing) the interface discontinuities and interpolating interface forces from
the interface grid to the fixed grid. For this purpose, the interface forces are transformed into
volume forces and distributed over a zone with non-zero width. This is sometimes referred
to as the continuous surface force (CSF) approach [6]. In the cut-cell approach [7, 8] on the
other hand, the interface conditions are satisfied without smoothing of the interface.

The interface grid will be difficult to evaluate when the interface has arbitrary shape and
topology. Therefore an implicit interface definition by means of the VOF and Level-Set
methodology is preferred for the present research. In the VOF method, a marker function,
say W, indicates the fractional volume of a certain fluid, say fluid ‘1°, in a computational cell.
In a grid cell Q, ¥ is defined by

1
‘I’Iivom)/gxdg (1)

where y is the characteristic function, which is 1 in fluid ‘1’ and 0 elsewhere. The value of ¥
will be 0 or 1 in cells without the interface and 0 <W¥ <1 in cells containing the interface. In
other words, the value of W changes rapidly across the interface. This causes difficulties in
advecting W. The step-like behaviour of ¥ will be smoothed by straightforward application of
a numerical scheme. Hence the location of the interface will become ill-defined. Furthermore,
VOF methods can suffer from ‘flotsam and jetsam’, which are small remnants of mixed-
fluid zones [9]. Furthermore, the step-like behaviour of the marker function makes computing
interface derivatives (normals, curvature) elaborate. The major advantage of VOF methods is
that mass is rigorously conserved, provided the discretization is conservative.

Advecting W is not straightforward. This can either be performed algebraically or geomet-
rically. Algebraic methods try to discretize the advection equation for the marker function ¥
while incorporating the step-like behaviour of W. Examples are: Constrained Interpolation
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Profile [10] and Flux-Corrected Transport (FCT) [11,12]. Geometric methods first recon-
struct the interface from W, after which it is advected. Geometric VOF methods differ in the
accuracy of the interface reconstruction. With Simple Line Calculation (SLIC) the interface
is assumed to be piecewise tangential to a co-ordinate direction [9]. In case of the donor—
acceptor (SOLA-VOF) method the interface is stair-stepped [13, 14]. And with the Piecewise
Linear Interface Calculation (PLIC) method the interface is piecewise linear [12, 15, 16]. When
the discrete interface representation is more accurate, the interface reconstruction is more dif-
ficult. This is a drawback especially of the PLIC method, which on the other hand is the most
accurate method.

An alternative for the VOF method is the Level-Set method [17, 18]. The interface is now
defined by the zero level-set of a marker function, say ®: ® =0 at the interface, ¢ >0 inside
fluid ‘1’ and ¢ <0 elsewhere. The function ® is chosen such that it is smooth near the
interface. This eases the computation of interface derivatives. Also, methods available from
hyperbolic conservation laws can be used to advect the interface. The interface is (implicitly)
advected by advecting ® as if it were a material property:

%—?Jru-vob:o 2)

Although this makes the Level-Set method elegant, its disadvantage is that it is not rigorously
mass-conserving. This means that additional effort is necessary to conserve mass, or at least
to improve mass conservation. One approach would be to approximate Equation (2) more
accurately by higher order schemes or by grid refinement. In Reference [19] higher order
ENO discretization of Equation (2) is adopted and in Reference [20] the grid is refined
adaptively near the interfaces.

The interface forces and discontinuities are often smeared out over a zone with non-zero
width in a CSF way. To keep the smeared-out interface thickness constant in the course of
time, it is necessary that the Level-Set function is a so-called distance function at all time
instants. This is achieved by re-initialization in Reference [21]. However, when the interface
is advected through the flow field, the violation of mass-conservation is increased due to
re-initialization. Therefore, improved re-initialization is carried out in Reference [19].

Mass-conservation is improved due to all the aforementioned measures, but is never exactly
satisfied. Nice results are shown in Reference [22], where mass-conservation of the Level-Set
method is improved by adding passively advected marker particles. These particles are used
near the interface. It is required to keep track of the particles and to redistribute (or reseed )
the particles. The velocity field has to be interpolated at the particle positions. Furthermore,
the interface has to be reconstructed from the particles.

The CLSVOF method [1,2] is a coupling of the Level-Set method with the VOF PLIC
method. The flow-field is computed with a Level-Set method, which is advantageous for
computing interface normals and curvature and regularization of discontinuities. In order to
conserve mass, the interface is advected by a VOF (PLIC) method. After each interface update
coupling of the Level-Set and VOF functions takes place. This coupling is not easily achieved.
A drawback might be that the elaborateness of the VOF methods is imported. The advantage
of the method is that the mass-conservation properties are shown to be comparable with VOF
methods.
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1.2. Mass-Conserving Level-Set (MCLS) method

The Level-Set method has some advantages over all other methods mentioned before. Espe-
cially where solving the flow-field is concerned, since interface normals, curvature and distance
towards the interface can be expressed easily in terms of the Level-Set function ® and its
derivatives. Also, advecting the interface is possible by application of ‘of-the-shelf” techniques
for hyperbolic conservation laws. For these reasons, the Level-Set method has been chosen as
the basis of our work. However, mass-conservation is not an intrinsic property and is consid-
ered the major drawback of the Level-Set method. Our work focuses on a mass-conserving
way to advect the interface, resulting in what we will call the MCLS method.

This work has a shared foundation with the CLSVOF method [1, 2] and to a lesser extent
with the combined Level-Set/particle method [22] in the sense that it is based on Level-Set
and additional effort is made to conserve mass. The difference with CLSVOF is that here
there is no combination of two existing methods. The method takes full advantage from all
additional information provided by the Level-Set function ®, rather than coupling Level-Set
with VOF/PLIC. In fact we use the VOF function ¥ to conserve mass, without applying the
difficult convection step (namely interface reconstruction) which makes VOF so elaborate.

We propose an explicit relation between the Level-Set function & and VOF function ¥,
which is the basis of the MCLS method. This relation is obtained by assuming piecewise
linear interfaces within a computational cell, and can be written as:

U=f(P,VP) 3)

This relationship makes advection of the VOF function ¥ easy (i.e. without interface recon-
struction) and finding ® from W straightforward. The PLIC method is not adopted (unlike
CLSVOF), yet mass is conserved in the same manner. Note that the PLIC method (and con-
sequently the CLSVOF method) might not be easily extensible to 3D. Extension of MCLS
to 3D is straightforward. Note also that with this approach, it is not necessary to smooth (or
regularize) W, which is usually necessary in other methods.

2. GOVERNING EQUATIONS

Consider two fluids labeled ‘0’ and ‘1’ in domain € R? which are separated by an interface S.
Both fluids are assumed to be incompressible, i.e.:

V-u=0 (4)

where u=(u,v)' is the velocity vector. The flow is governed by the incompressible Navier—
Stokes equations:

1 1
g‘;—ku-Vu:—pr+pV-,u(Vu+Vut)+g %)

where p, p, i and g are the density, pressure, viscosity and gravity vector, respectively. The
density and viscosity are constant within each fluid. We have

p=po+(p1— po)H(P) (6)
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and

u= o + (1 — po)H(P) (7

where the ® is the Level-Set function describing the interface S, and H is the Heaviside step
function.

2.1. Interface conditions

The interface conditions express continuity of mass and momentum at the interface:

[u]=0
(8)
[pn —n - w(Vu+ Vu')]=ckn

where the brackets denote jumps across the interface, n is a normal vector at the interface, o
is the surface tension coefficient and « is the curvature of the interface. If s is parallel to the
interface, u,=n-u and u;,=s - u, it can be shown [23, 24] that in general

ou Ju
n -0 n -0
w3
Ju Ju Ju
- = J’ s :O
[ on ] L] 0s [ 0Os ]
Note that if the viscosity p is continuous at the interface, Equation (9) shows that the deriva-
tives of the velocity components are continuous too. In that case Equation (8) reduces to

[u] =0 and [ p] =oxk. To achieve that, the viscosity is made continuous by smoothing expres-
sion (7):

)

u=po + (1 — po)H(P) (10)

where H, is the smoothed (or regularized) Heaviside step function:

0, x< —o
Hy(x) = %(1+sin (%n)) x| <o (11)
1, x>o

and o is a parameter proportional to the mesh width 4. Here o is chosen as (following
Reference [21]) o= %h. According to Chang et al. [25], the viscosity is then smoothed over
three mesh widths, provided |[V®|=1. Note that only the viscosity is smoothed, not the
density p. Note also that when the density is not regularized, mass is conserved when the
volume of a certain fluid or phase is conserved. In fact, the MCLS method conserves volumes
by construction. Due to the non-regularized density-field, mass is conserved too. Instead of
exactly taking into account the pressure-jump at the interface due to the surface tension forces,
the CSF/stress [6] methodology is adopted.
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3. COMPUTATIONAL APPROACH

The Navier—Stokes equations are solved on a Cartesian grid in a rectangular domain by the
pressure-correction method [26]. The unknowns are stored in a Marker-and-Cell (staggered)
layout [27]. For the interface representation the Level-Set methodology is adopted. The in-
terface conditions are satisfied by means of the CSF methodology. The discontinuous density
field is dealt with similarly to the ghost fluid method for incompressible flow [23].

3.1. Pressure correction

The Navier—Stokes equations (5) are discretized using finite differences. The unknown velocity
components u and v are solved sequentially. Superscript n denotes time-level . First a tentative
velocity u* is computed by

w—u (N (ouY
At Ox oy
+l Oudu/ox . Oudu/dy N _ Oudv/dy n Oudv/ox
0 Ox Jy Ox dy

(12)

The resulting system of equations is solved by a direct method. Note that there are no pressure
gradient terms at the previous time level included in Equation (12). These are not incorporated
in the predictor step 12, because the density p"*! is not equal to the density p” due to the
moving interface, so that it is impossible to write V p"*!/p — V p"/p=Vd p/p, which is the
usual formulation for single-phase flows. Furthermore, gravity terms are only included in
the predictor if the pressure gradient is present. Since the pressure gradient is absent in
Equation (12) no gravity is included. The equation for v is treated similarly. Due to the
regularization of y, the velocities u# and v and their derivatives are continuous. The gradients
can therefore be approximated by central differences. Velocities which have to be stored and
evaluated at different locations, are approximated by averaging [27]. Note that the stress tensor
is split into a part on time level * (implicit) and n (explicit), due to the fact that # and v are
solved sequentially. Note that all terms containing u in the diffusion part of Equation (12)
are implicit. In the stress tensor u, + v, =0 is used.
The velocities at the new time instant n 4+ 1 are computed by:

un+1 —u*

1
A ——;Vp—i—g (13)

under the constraint of Equation (4). This gives

1
uH=u* + At (— Gp+ g)
p (14)
Dun+1:0

where D represents the discretization of the divergence and G is the discrete gradient operator,
which remain to be specified. Discretization of %G p requires special care, because p and p are

discontinuous at the interface. Computation of %G p is similar to that used in the ghost fluid
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method for incompressible flows [23,28] and will be discussed in the next section. Equation
(14) gives:

1 1
D-Gp=D|-—u* 1
G ( LUt g) (15)
Further details on this pressure-correction method can be found in Reference [26].

3.1.1. CSF. The surface tension force ox in Equation (8) is approximated as follows. Adopt-
ing the CSF methodology, the interface force is transformed in a volume force by writing
(see e.g. Reference [29])

/ ok dS = / akS(®)VE dQ
S Q

where ¢ is the delta function. This results in an additional term in Equation (5) of the form

% okS(®)VD (16)

which is discontinuous, due to the behaviour of p. The curvature of the interface is given by

Vo
v oo (17)

which is approximated by central differences. The average density p=1(po + p1) is taken in
the force term:

1

5 oxd(P)VD (18)

Note that this is allowed, since integration of p/pard(P)VP perpendicular to the interface
still results in the correct interface force, which is the essence of the CSF approach. By
regularizing the delta function in the same manner as the Heaviside step function
(Equation (11))

1<l—i—cos (q)n)), |®| <o
3,(®)={ 22 x (19)
0, |P|>a

Equation (5) becomes

0 1 1 1
a—l;—l-u'Vu:—EVp%—;Vﬂ(Vu—l-Vut)#—g—Eaxéa(CI))Vé (20)

Here o has the same value as in Equation (11), i.e. o = %h. The additional term oxd,(®)VP/p
is incorporated in Equations (13) and (14) in a straightforward way:

1 1, 1
D Gp=D (Atu —I—gp_mcéa((I))V(I)) @1

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:339-361



346 S. P. VAN DER PIIL ET AL.

and
n+1 * 1 1
ut =ut + At —;Gp—i—g— EJK&“(@)V@ (22)

If the interface force was not regularized, but included as a pressure jump, the pressure-jump
terms would enter the pressure-correction step in a similar manner. Note also that gx/p is
regularized and not ox. This keeps the density p (piecewise) constant, which guarantees a
straightforward application of the pressure-correction methodology.

3.1.2. Discontinuous density field. In this paper the discontinuous density field is dealt with
similarly to the ghost fluid method. In Reference [28], the pressure derivatives 1/pdp/0x at u
locations (i + 1,/ + %) are approximated by

R P31 —P, 1.1
(1) By — (23)
0x ) 414k Ax

i+1,j+5

and similarly for 0p/0y, where f=1/p. Here we make use of [1/pV p]=0 [23]. Note that
due to the CSF methodology no pressure jumps have to be taken into account at the interface.
The quantity f is the harmonic average of f5. Further details can be found in Reference [28].

3.2. Interface advection

The strategy of modelling bubbly flows is to compute the flow with a given interface position
and to subsequently evolve the interface in the given flow field. In the previous sections the
manner by which the flow is computed with a given interface position was described. Next
we consider the evolution of the interface.

3.2.1. Level-set. The interface, say S, is the zero level-set of ®:
S(t)={x e R*|®(x,t) =0} (24)

The interface is evolved by advecting the Level-Set function in the flow field as if it were a
material property, according to Equation (2). A homogeneous Neumann boundary condition
for & is imposed at the boundaries. The accuracy of the approximation of Equation (2)
determines the accuracy of the interface representation. This accuracy will also determine
the mass errors. The discretization of the gradient of ® can be either first-order upwind, or
second- or third-order ENO [21, 25,29]. In case of first-order spatial discretization, a forward
Euler temporal discretization is sufficient. In case of the higher order spatial discretization, a
Runge—Kutta scheme is applied (see e.g. Reference [19]).

If the interface is smoothed over a zone with non-zero width, keeping ® a distance function
ensures that the front has finite thickness at all time [21,25]. This is especially important
when the surface tension force is distributed over a number of grid cells (CSF approach).
However, if an initial signed distance function is advected through a non-uniform flow, it
does not necessarily correspond to a distance function any longer. Therefore, we apply re-
initialization as described in References [21,25]. In References [19, 28, 30] re-initialization is
improved to prevent additional mass-errors associated with re-initialization. Nevertheless, mass
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errors still remain. Therefore a different approach is chosen, which is described in the next
section.

3.2.2. MCLS. The difficulty with the Level-Set method is that conservation of ® does not
imply conservation of mass. On the other hand, with the VOF method, mass is conserved
when W is conserved. In order to conserve mass with the Level-Set method, corrections to the
Level-Set function are made by considering the fractional volume ¥ of a certain fluid within a
computational cell. First the usual Level-Set advection is performed: first-order advection and
re-initialization as described above. Low-order advection and re-initialization ensure numerical
smoothness of ®. Furthermore, when the flow-field is computed, higher order accuracy might
not be expected when the CSF method is applied and viscosity is regularized. In that respect,
higher order discretization of Equation (2) will only lead to improved mass conservation for
the pure Level-Set methods. Since the obtained Level-Set function ®"+* will certainly not
conserve mass, corrections to ®"*1* are made such that mass is conserved. This requires
three steps:

1. the relative volume of a certain fluid in a computational cell (called “VOF’ function W)
is to be computed from the Level-Set function ®": ¥ = f(P,VP);

2. the VOF function has to be advected conservatively during a time step towards ¥"*!;

3. with this new VOF function U"*! corrections to ®"*'* are sought such that f(®"*+!,
Vo +1)y = pnt! holds.

These three steps will now be described in more detail.

Step 1 (VOF function): A relation between the Level-Set function & and the VOF function
¥ is found by considering the fractional volume of a certain fluid in a computational cell
Q. In this paper, a uniform Cartesian mesh is employed consisting of computational cells
Qr, k=1,2,.... The centre of € is denoted by x; = (x;, yx)' and Ax and Ay are the mesh
sizes in x and y direction, respectively. In the computational cell €2;, the VOF function ¥,
is defined by Equation (1). Employing the Level-Set function ®, the characteristic function y
becomes y = H(®), where H is the Heaviside step function. The connection between ® and
U is therefore:

1

“= ol o, H(®)d (25)

® is linearized around ¥y, which is the value of ® in x;: & =, + VP, - (x—x; ). Substituting
this into Equation (25) and taking &= (x — x;)/Ax and n=(y — y;)/Ay yields

Ui = f(Pr, V&) (26)
where

0P
ay

n) dnd¢ (27)
k

1 1
f(<I>k,V<I>k):/2 /2 H(Cbk—l—Axa(D E+ Ay
éz—% »7:—% 0x |

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:339-361



348 S. P. VAN DER PIIL ET AL.

D _(Dmid 0 q)mid (Dmax @

Figure 1. Fractional volume W as function of Level-Set value .

Note that ®ig and Pmax are determined by VO.

Note that in contrast with other approaches, the Heaviside step function is not regularized.
After some mathematical manipulations, the function f is obtained as

0, q)k < - q>maxk
1 ((I)maxk + <I)k )2
A G VI _(I)maxk < q)k < - <I)midk
? (I)rznaxk - (I)rznidk
1 Py
f(@r, VP;)= ¢ 5+ —Prigr < Pp < Prniay (28)

_—
(pmaxk + q>midk

1 ((I)maxk - (I)k)z
T 22 2

maxk

2 5 (I)midk < (I)k < (I)maxk
midk

19 q>k = (I)maxk

where
(Pmaxk:% (|ka\ + |Dyk|)’ q)midk:%HDy/J - |kaH
0P oD (29)

Do=0Ax 22| D, —Ay 22
k xaxk Tk yayk

which are approximated by central differencing. In Figure 1, f is plotted as a function of ®.
Note that in this figure, the values ®.,;q and P, are determined by V&.

Step 2 (VOF advection): At a certain time instant the VOF function can be computed by
means of Equation (27). The VOF function after a time step is found by considering the flux
of fluid F' that flows through a boundary I' of a computational cell during time-step At:

At
F= / /H((I)(x,t +1))dSdr (30)
o Jr
which is approximated by

At
F%/ /H((b(x—ur,t))der: H(D(x,1))dQ 31)
0 T

Qp
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Fy

Yit+1/2, j+1

!

- +
in,j+l/2 FXi+I,j+l/2
— —_—

R

“F Yiv1/2,j

Figure 2. Donating regions for fluxes F; and F). These are the shaded areas that will flow through the
boundaries during a time step. Doubly fluxed areas exist near the corners of the cell.

where Qp is the donating region of face I', which initially contains all fluid that will flow
through face I' during time-step Az (see Figure 2). Summation over all boundary faces leads
to:

1 (Fys —F,..
n+1 _Tyn N Xi+1,j+(1/2) xi, j+(1/2)
Yisamam = Yiameap AxAy  HEviapy o~ Bivap.,) 32)

where the subscripts indicate the corresponding boundary face. Depending on the sign of the
velocity at the face, the donating region can either be on the left or at the right neighbouring
cell. Formally, the flux can therefore be split into a contribution from both neighbours, called
F* and F~, respectively (see Figure 2). Of course if F© # 0 then F~ =0 and vice versa. In
this way the fluxes can be written as

_ ot - _ 5t -
B jran = F i+1,j+(1/2) +Fy i+1,j+(1/2) Fyi+(1/2),j =F i+(1/2),j +F, i+(1/2),j (33)

and similarly for the other fluxes.
The fluxes are computed by linearizing ® (just like Equation (27)):

(1/2) (1/2)
Eyam=xdy [ [ H@ DD ands (34)
’ E=(1/2)—vt Jyp=—(1/2)
and
—(1/2)—v" (1/2)
Foam= by [ [ H@eDu D ande(35)
’ E=—(1/2) n=—(1/2)

and similar for the other fluxes, where

g = maxijia, AL minu;j1ay2), 0)A!

Ax Ax (36)
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and

D, =®;_(12),j+(1/2)> Dr=P;(12),j+(1/2)
0P 0P

DxL:A.x 67 5 DyL:Ay 67
X li(2),j+01/2) Ylimay+a/2) (37)
0P 0D

DJCR:AX aﬁ 5 DyR:Ay 87
X iv1/2),j+01/2) Y liv/2).j4+01/2)

With some scaling, these fluxes become

~ 1 ~ 1 t
Fl =V AxAyf (‘I)p (Ax Dy, Ay DyL))
(38)
_ _ ~ 1 N 1 t
Ejeqp=V AxAyf | Og, EDXR’BDyR
where
b=, + (1/2)(1 = vH)Dy.  Br=0g — (1/2)(1 +v7)Dy, (39)

N N _
DXL_V Dan DXR__V DXR

Time-step At and velocity u are included in vt and v—. This scaling of variables makes the
advection of U rather straightforward, since an analytic expression for the function f is given
in Equations (28) and (29). The fluxes in the y direction are obtained in the same way.

Figure 2 illustrates that overlapping donating regions can exist in the corners of the cell.
Fluid in those overlapping regions is fluxed more than once through different faces. This can
be remedied by employing either a multidimensional scheme or flux-splitting. For simplicity
we have chosen the second approach. The order of fluxing is: first in x direction, then in y
direction. The flux-splitting of Sussman and Puckett [1] is adopted:

1

Vianam = axay Eiiam = Fipam)

q’ﬁ 1/2),j+(1/2)=
R 1 - %(ui+l,j+(l/2) — Ui j+(1/2))
1

Y2 — AxAy (Fyl:-(l/z),jﬂ - F)’;—(I/Z),j) (40)

a2t =
AR 1- %(Uw(uz),ﬁl = Vit(1/2),)

v

g Ay (g i) T ) L Vit(1/2),j+1 — Vi(1/2),)
) Ax Ay

The intermediate values F'* are computed with a corrected Level-Set function ®*: f(®*, V®*)
=WU*, Note that any other flux (or operator)-splitting technique could be adopted. Note also
that due to the construction of Equation (32) the quantity W is conserved, which is necessary
for mass conservation.

Flux redistribution. As reported in Reference [1], undershoots and/or overshoots can still
occur, which leads to unphysical values of ¥, namely <0 and > 1. If these values are replaced

n+1
i+(1/2),j+(1/2
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7 5 6
v
2 4_, 4
u
1 3 8

Figure 3. Order of flux redistributing for >0 and v>0. The numbers in the graph indicate the order.

by 0 and 1, respectively, mass errors arise which are in general of the order 10~*. This is
also observed with the present method and applications. Mass errors are completely avoided
by redistributing . The idea is to flux mass out of cells with ¥ >1 and flux mass into cells
with U <0. Since the trouble is in the doubly fluxed regions, the fluxes are firstly taken from
the diagonal (i 4+ (1/2) — sign(u),j + (1/2) — sign(v)) neighbouring cells.

Assume that cell k has a value ¥/ <0. Then define a flux F towards neighbouring cell /,
so that Uy =Wt — F=0: F =¥} In order not to cause unphysical values of ¥;, limit
by

F = min(max(¥/*!, —@r+), 1 — (41)

so that 0< W, =W""" + F<1. Then make corrections to ®; and ®; by ¥, =¥ — F and
U, =W + F. In case of W™ >1, the flux F is

F = min(max(¥} ™ — 1, -0ty 1 — wrth) (42)

In two dimensions, there exist eight neighbouring cells / which can contribute to cell k. The
order in which the neighbouring cells / are chosen is depicted in Figure 3. Note that the first
step (in —(sign(u),sign(v))-direction) takes out most of the unphysical W-values, since this
is the direction the doubly fluxed region was fluxed from. It is therefore important to take
that neighbour first. The order of the other neighbours is arbitrary. The values of u and v at
U locations are interpolated by averaging.

Step 3 (Inverse function): Having found a new VOF function U"*!, the initial guess of the
Level-Set function ®"*!-* (after Level-Set advection) is modified, such that mass is conserved
within each computational cell. In other words, find (®,,®,,...), such that

F(@, Ve — it <e Vhk=1,2,... (43)

where ¢ is some tolerance. It will be clear that due to the behaviour of ¥ no unique solution ¢
exists. However, a (small) correction to ®* is searched, where ®* comes from Level-Set
advection. A solution ® is found by the following iteration (until convergence): leave ®
unmodified in a grid point when the VOF constraint is satisfied and make corrections locally
when this constraint is not satisfied. This is achieved by using the inverse function g of f as
given in Equation (28) with respect to argument ®;:

fg(P,Ve),VP)=" 44)
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and employing Picard-iterations. Starting with (®7""* ®7Th* ), if at time step n + 1
(¥1,V,,...) has to be equal to (U7, Wt ) then the mth iteration is:
n+l,m n+l,m
D,=Ax o , D,=Ay o
0x | oy i (45)
(I)max:(l/z)(lDX‘ + |Dy‘)a q)mid:(1/2)||Dy| - |DXH

: n+1,m n+1 n+1,m+1 __ sn+l.m
and if W} # Wi (else @ =o ")

@Z+l,n1+1 :g(\:[}]’é+lav(bz+l’m) (46)
where
P, VIO
A, 0<WIt <1 — Wi
gV, Vo)= (%, 1= Wi SO < Wi (47)
9, Uig <P <1
D axs \112+1 =1
and
B[ 20 (B — B2,) — B
G=(T;" — (1/2))(Prax + Prvia) (48)
G= 21— WY — D) + B
and
RO K v = “

These iterations are repeated until max; [W™"""" — W+ <¢ A graphical overview of the
method is given in Figure 4.

3.3. Time-step restrictions

Following References [23,29], an adaptive time stepping procedure is chosen by considering
the time-step restrictions due to convection, diffusion and surface tension effects. Since the
Level-Set function ® and the VOF function ¥ are advected explicitly, the restriction due to
advection is:

1
At = (50)
|tt|max/ Ax + [V]max /Ay
The restriction due to surface tension given in Reference [23] is
1
At (51)

 \/6[K[max/min(po, pr) min(Ax, Ay)?
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Cor>
level—Set advection Y=f(D)

re—initialization

VOF advection

| flux x—direction

Figure 4. MCLS method: interface advection; ®: Level-Set function; ¥: VOF function.
The left-hand side branch corresponds to pure Level-Set advection. The right-hand
side branch represents the VOF advection.

Since the surface tension force is regularized, i.e. ox is replaced by owd(P)k and
h = min(Ax, Ay), the restriction becomes

1
* V/[0%8(®) ax/min(po, p1) min(Ax, Ay)

(52)

8

Diffusion is accounted for implicitly, hence no time-step restriction is encountered. For the
time-step At finally holds (see e.g. Reference [29])

At <CFL min(At., At) (53)
where, again following References [23,29], CFL =(1/2) is used.
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4. APPLICATIONS

The behaviour of the MCLS approach is shown by a couple of standard advection tests, with
a prescribed velocity field. Thereafter, the method is applied to the complete set of equations
by considering a falling drop and a rising bubble, respectively.

4.1. Advection tests

4.1.1. Linear advection. The first advection test is presented in Figure 5. The velocity field is
prescribed by (u,v)=(0,—1). The dimensions of the computational domain are: L, =10 and
L,=100. We use a 10 x 100-mesh. Initially a circle of radius R, is placed at x=L,/2 and
y=L, —2Ry. For the case of Ry=4 (a circle with a diameter of 8 mesh sizes), the relative
mass is plotted in Figure 6 as function of the traversed distance of the circle. First-, second-
and third-order pure Level-Set simulations (with and without re-initialization) are compared
with the MCLS method. ENO discretization is adopted for the pure Level-Set method (see
aforementioned references). The order of re-initialization is in agreement with the order of
advection. The tolerance in the VOF advection is taken to be: ¢=1078. Globally speaking it
can be said that mass is always lost for the pure Level-Set advection. Mass losses are smaller
for higher accuracy and re-initialization causes much higher mass losses. The MCLS method
conserves mass up to the specified tolerance.

4.1.2. Zalesak’s rotating disc. The advection test of Zalesak [11] is often used to demon-
strate the interface-advection algorithm (see e.g. References [12, 15, 16] for VOF methods and
References [1, 19,22, 29] for Level-Set methods). A slotted disc (Figure 7) is rotated through
one revolution around the centre of the computational domain. The velocity-field is prescribed
by: (u,v)=(—(y —(1/2)L,),x — (1/2)L,). The centre of the slotted disc (xo, yo)' is located at
(x0, ¥0) =((1/2)Lx, 3L,). The sizes are: L, =L,, Ry= 3L, and W = 1R,.

2R,

L

X

Figure 5. Linear advection test. A disc of radius R, is advected in a rectangular
domain of L, by L,. The centre of the disc is initially placed at 2R, from the top of
the domain. The advection velocity is u.
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Figure 6. Relative mass errors for the linear advection test; e=10"% (every 10th iteration marked).
Pure Level-Set advection with different discretization orders are compared with MCLS.

Ry

w

Figure 7. Zalesak’s slotted disc advection test (to scale). The dimensions of the
slot are depicted in the graph.

In Figures 8 and 9 results are shown for various mesh sizes. As might be expected, given
the foregoing linear advection results, mass is still lost with the high-order Level-Set method.
For the MCLS method, mass is conserved up to the specified tolerance &, although mass is
redistributed due to numerical diffusion. Results of the MCLS method are comparable with
VOF/PLIC methods (see aforementioned references). Note that the Level-Set advection is
first-order in the case of the MCLS method.

The length /(S) of the interface S can be expressed as (see e.g. Reference [25])

Z(S):/SdS:/Qé(<1>)|V<1>|dQ (54)
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Figure 8. Results for Zalesak’s advection test; the shaded area indicates the initial contour. The dashed
lines indicate the interface after one revolution with third-order pure Level-Set advection. The solid
lines correspond to MCLS advection. Four different mesh sizes have been employed.
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Figure 9. Relative masses for Zalesak’s advection test; e=10"% (every 50th iteration marked). Pure
Level-Set advection with third-order discretization is compared with MCLS for different mesh sizes.
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Table I. Computed interface lengths after one revolution.

%g% 50 x 50 100 x 100 150 x 150 200 x 200
Initial 0.86094 0.98187 0.98804 0.99102
3rd order 0.49236 0.80940 0.91253 0.93318
MCLS 0.84106 0.95977 0.97020 0.97570

This is approximated by using central differences and regularization of the Dirac delta function
(see Equation (10)):

l(S):/éa(®)|V<1>\dQ (55)
Q
where
0, |x| > o
59{(')(:): 1 _l_ COS(E) (56)
o Plse

Note that due to Equation (10), the exact value of & has no meaning in the Level-Set
formulation; only its sign is relevant. The o in Equation (55) therefore equals the o of
Equation (10). The exact length of the interface is

0 I w /4
1(S%)= (4+2n' 2 arctan (2 R0> RO)RO (57)
In Table I, the computed interface lengths after one revolution are compared with the exact
length. ‘Initial’ means at =0, when errors are made due to the regularization of the delta
function. Furthermore, ‘3rd order’ and ‘MCLS’ correspond to the interface lengths after one
revolution.

Since ®° is a distance function, |® — ®°| is a measure for the shift of the interface after
one revolution. A norm of the error e can be defined as

lell, = Js1(® — @%)/L,|7 dS ””_ Jo (@ = @)L, [75,(®) V| d )
. Js dS - i, 8.(®)| V[ dQ

where L, is used to non-dimensionalize ® and ®° is the initial Level-Set function. Results are
presented in Figure 10. In all cases the MCLS approach is superior to the third-order ENO,
pure Level-Set method.

(58)

4.2. Air/water flow

In Reference [23], a two-dimensional rising air bubble in water is considered. The dimensions
and sizes are: L, =0.02m, L,=3L,, Ry=1L,, xo=yy=(1/2)L,. The gravity and material
constants are: g=9.8m/s?, ¢ =0.0728 kg/s?, p,, = 10’ kg/m?, p, =1.226 kg/m?, u,, =1.137 x
103 kg/m's and p, =1.78 x 10~ kg/m s, where subscripts w and a indicate water and air,
respectively.
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Figure 10. Errors for Zalesak’s advection test. The left graph show the errors of the
Level-Set function ® near the interface after one revolution. The right graph shows the
errors in the computed interface length.

t=0 t=0.01 t=0.025

O O o

t=0.05 t=0.075 t=0.1

QQ

Figure 11. Interface positions for the rising bubble. Three different mesh sizes have been employed:
—-—:30x45; ——:40 x 60; —: 60 x 90 mesh. Snapshots are presented with equidistant time-steps.
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t=0 t=0.02 t=0.04

O O

O

t=0.05 t=0.06 t=0.065

S A Y

Figure 12. Interface positions for the falling droplet; three different mesh sizes have been employed:
—-—:30x45; ——:40x 60; —: 60 x 90 mesh. Snapshots are presented with equidistant time-steps.

Results are shown in Figure 11 for three different mesh sizes. We take ¢=10"%. Relative
mass losses are of the same order and in agreement with the advection tests. Note that the
number of grid cells is much smaller than in Reference [23]. The results are the same for
t<0.025 for all mesh sizes. Thereafter small differences occur. The results compare well with
Reference [23]. The MCLS method seems to result in a more compact structure at the highly
curved part of the interface at  =0.05. This is thought to be caused by the low resolution of
the grids used here.

In Figure 12, results are shown for a falling droplet. The conditions are the same as for the
rising bubble, except for the sign of ® at t=0 and y,=L,. Note that we use homogeneous
Neumann boundary conditions for the Level-Set function ¢ and VOF function ¥. Mass con-
servation properties are the same as before. The results are the same until the droplet hits
the bottom. Thereafter differences occur. This is thought to be due to limited number of grid
cells available to capture the flow-phenomena near the wall. The results compare well with
Reference [23]. Note that the results in Reference [23] span #<0.05; no results after collision
are presented.

4.3. Computational costs
The computational costs of the MCLS method are compared with purely third-order Level-

Set advection in Table II. The numbers correspond to CPU seconds spent per time-step for
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Table II. Computational costs measured in CPU seconds per time-step.

MCLS 3rd order
Level-Set advection 0.03 0.07
Re-initialization 0.02 0.07
VOF advection
Flux x 0.04
Correct 0.04
Flux y 0.04
Correct 0.05
Redist 0.06
Total 0.23
Total advection 0.28 0.14
Total time-step 1.50 1.35

MCLS is compared with third-order Level-Set advection for the rising bubble test case on a 60 x 90
mesh.

the rising bubble test case on a 60 x 90 mesh. Note that the Level-Set advection is first-order
accurate in case of MCLS. The interface advection for MCLS becomes approximately twice as
expensive. This makes the total time-step approximately 10% more expensive. On the other
hand, mass is conserved up to the specified tolerance in case of MCLS, whereas mass is
lost/gained for the third-order pure Level-Set advection (see Figures 6 and 9 for the advection
tests).

5. CONCLUSION

A novel mass conserving Level-Set (MCLS) method has been presented. The method is
based on a Level-Set approach, with enhanced mass conservation by considering the frac-
tional volume of fluid within a computational cell. Advection tests were used to compare the
method with the Level-Set method. Mass is conserved up to a specified (vanishing) tolerance.
The MCLS method combines the apealing features of the Level-Set method with the mass-
conservation properties of Volume-of-Fluid methods. The implementation is much easier than
for a Volume-of-Fluid (based) method, especially in three-dimensional space. The applicabil-
ity of the MCLS method was illustrated by the application to air—water flows. It is possible
to capture bubbles or droplets with a moderate number of grid cells without mass loss up
to the prescribed tolerance. This is an important feature for three-dimensional applications,
where the number of grid cells available to an individual bubble will be severely limited.
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